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Abstract

In this paper we present improved methods for discriminating and quantifying Pri-
mary Biological Aerosol Particles (PBAP) by applying hierarchical agglomerative clus-
ter analysis to multi-parameter ultra violet-light induced fluorescence (UV-LIF) spec-
trometer data. The methods employed in this study can be applied to data sets in5

excess of 1×106 points on a desktop computer, allowing for each fluorescent particle
in a dataset to be explicitly clustered. This reduces the potential for misattribution found
in subsampling and comparative attribution methods used in previous approaches, im-
proving our capacity to discriminate and quantify PBAP meta-classes. We evaluate the
performance of several hierarchical agglomerative cluster analysis linkages and data10

normalisation methods using laboratory samples of known particle types and an ambi-
ent dataset.

Fluorescent and non-fluorescent polystyrene latex spheres were sampled with a
Wideband Integrated Bioaerosol Spectrometer (WIBS-4) where the optical size, asym-
metry factor and fluorescent measurements were used as inputs to the analysis pack-15

age. It was found that the Ward linkage with z-score or range normalisation performed
best, correctly attributing 98 and 98.1 % of the data points respectively. The best per-
forming methods were applied to the BEACHON-RoMBAS ambient dataset where it
was found that the z-score and range normalisation methods yield similar results with
each method producing clusters representative of fungal spores and bacterial aerosol,20

consistent with previous results. The z-score result was compared to clusters gener-
ated with previous approaches (WIBS AnalysiS Program, WASP) where we observe
that the subsampling and comparative attribution method employed by WASP results
in the overestimation of the fungal spore concentration by a factor of 1.5 and the un-
derestimation of bacterial aerosol concentration by a factor of 5. We suggest that this25

likely due to errors arising from misatrribution due to poor centroid definition and fail-
ure to assign particles to a cluster as a result of the subsampling and comparative
attribution method employed by WASP. The methods used here allow for the entire flu-
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orescent population of particles to be analysed yielding an explict cluster attribution for
each particle, improving cluster centroid definition and our capacity to discriminate and
quantify PBAP meta-classes compared to previous approaches.

1 Introduction

Microorganisms influence climate through their physical and chemical interactions with5

the atmosphere. Recently there has been renewed interest in how Primary Biologi-
cal Aerosol Particles interact with, and modify clouds. It has been shown that bacte-
rial aerosol such as Pseudomonas syringae can act as Ice Nuclei (IN) at relatively
warm temperatures (Möhler et al., 2007), which even in low concentrations can cause
rapid cloud glaciation via the Hallet–Mossop process leading to premature precipitation10

(Crawford et al., 2012).
It has been hypothesised that a feedback cycle exists where PBAP associated with

plants influence the formation and modification of clouds through ice formation to in-
duce precipitation, creating an environment which is beneficial for plant and microbial
growth thus stimulating further PBAP emission (Sands et al., 1982) – this is known as15

the bioprecipitation hypotheses and potential links between long term regional clima-
tology and PBAP emissions has recently been suggested (Morris et al., 2014). One
of the key drivers for new research into bioprecipitation is a need for more accurate
quantification of cloud evolution and precipitation in weather and climate models given
its potential impact.20

Bioaerosols are now being included as important components in global climate mod-
els (Heald and Spracklen, 2009; Jacobson and Streets, 2009). Recently bioaerosol
emission models were tested on European regional scales (Hummel et al., 2014) us-
ing real-time Wideband Integrated Bioaerosol Spectrometer data collected at rural and
semi-rural sites in Germany and Finland (Toprak and Schnaiter, 2013; Schumacher25

et al., 2013). Validation of these models is reliant on a very limited number of studies
and the authors highlight the difficulty of applying such models to e.g. urban environ-
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ments, and cite the general paucity of high-resolution atmospheric PBAP data to con-
strain model results. Providing such data is paramount to improving model predictions
and accurately assessing the impact of PBAP emissions on environment and health.
Retrieving such data is reliant upon the applicability of detection methods described in
the following section.5

The focus of this study is to evaluate hierarchical agglomerative cluster analysis
methods applied to WIBS UV-LIF datasets for the discrimination of primary biological
aerosol. In this paper we describe the detection method and data preparation proce-
dures before evaluating the performance of several common hierarchical agglomerative
cluster analysis linkages and data normalisation methods using laboratory and ambient10

datasets.

1.1 Detection methods

The detection, classification and quantification of PBAP remains a significant multi-
disciplinary technical challenge. Conventional techniques can be split into culturing
and non-culturing techniques, both of which require the collection of particles onto15

a medium for off-line analysis. Culturing techniques collect particles of interest onto
a growth medium which is incubated for hours to days. The grown colonies are then
counted microscopically, providing species identification but no quantification of their at-
mospheric concentration, making the technique unsuitable for estimating PBAP emis-
sions. Non-culturing techniques collect particles onto filters or in a liquid suspension20

which is more suitable for estimating atmospheric concentrations but is not typically
used for classification. The major limiting factors of non-culturing techniques are that
they are labour intensive, require long sampling periods and suffer from impactor sam-
pling artefacts (e.g. particle fragmentation, obscuration) leading to erroneous enumer-
ation. This makes it difficult to study emissions at the process level as some PBAP,25

such as fungal spores and bacteria, display large diurnal variations with significant
short term episodic emissions, which would require an impractical number of samples
to capture reliably. PBAP including bacteria can undergo substantial instantaneous
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spikes in emissions compared to their baseline state in response to rainfall (Crawford
et al., 2014; Hummel et al., 2014). These rapid emissions are important both to cap-
ture peak concentrations but to derive emission factors accurately and understand the
underlying mechanisms.

UV-LIF spectrometers have become available which show early promise of classi-5

fying and quantifying bioaerosols by broad taxonomic class on a single particle basis
(Crawford et al., 2014; Gabey et al., 2013). This instrument is based on technology
developed by the University of Hertfordshire Centre for Atmospheric and Instrumen-
tation Research (CAIR). A full technical description of the WIBS instrument is given
later in this manuscript. UV-LIF spectrometers work on the principle that PBAP con-10

tain biofluorophores such as NAD(P)H, riboflavin, and tryptophan which auto-fluoresce
when excited with UV radiation with the excitation and detection bands of the WIBS
are optimised to detct these common biofluorophores (Kaye et al., 2005). The single
particle, on-line nature of the technique yields far superior time resolution to the off-line
techniques discussed earlier, making it ideally suited to measuring PBAP in a rapidly15

changing environment. The time resolution is limited by the counting statistics, with typ-
ically 1–5 min integration periods providing adequate sensitivity depending on ambient
concentrations. This allows for better measurements of PBAP fluxes, which would be
difficult using traditional off-line methods.

Whilst UV-LIF spectrometers offer many advantages over traditional methods, dis-20

criminating between different bioaerosol classes and possible, non-biological fluores-
cent interferents remains an on-going area of research (Toprak and Schnaiter, 2013).
At present, UV-LIF spectrometers lack a common absolute reference standard, mak-
ing comparison of measurements made between instruments difficult. Furthermore the
lack of a calibration standard has impeded attempts to characterise PBAP of interest25

which would greatly simplify classification by the utilisation of supervised learning tech-
niques. In lieu of an absolute calibration method other techniques must be used to
segregate particles by type when interpreting uncalibrated datasets.
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2 WIBS UV-LIF instrumentation

A full technical description of the original WIBS measurement principles and its devel-
opment is described by Kaye et al. (2005); Foot et al. (2008); Gabey et al. (2011) and
Stanley et al. (2011). In the versions of the instrument used here ambient air is sam-
pled at 2.38 Lmin−1 with 10 % of the total as aerosol flow drawn through a 1.2 mm (inner5

diam.) tube to generate a single in-line aerosol beam intersecting a well-defined optical
sensing region. The remainder of the flow is filtered and used as a sheath flow to stabi-
lize the aerosol beam and minimise possible detrainment contamination of the optical
surfaces within the scattering chamber. Single particles passing through the sensing
region intercept a 635 nm diode laser beam, and the elastically scattered forward and10

sideways intensity is measured. A lookup table based on a standard Mie scattering
model (Kaye et al., 2005) is used to convert the forward to side-scatter intensity ratio
to optical diameter based on the instrument’s response to NIST calibration polystyrene
latex (PSL) spheres. The WIBS utilises a quadrant detector to measure the scattered
intensity. The signal from each component quadrant is used to calculate an “average”15

optical diameter over the four scattering solid angles. In addition the standard deviation
between the four signal intensities is used to provide a particle asymmetry factor (AF)
as a proxy of particle morphology. AF is reported in arbitrary units (a.u) and is based
on measurements with calibration particles with different aspect ratios. AF ranges be-
tween 8–10 for near spherical particle and 20–100 for a rod- or fibre-like particles. The20

detectable particle “average optical diameter” range for WIBS-4 is 0.5 < Do < 20 µm,
with a 50 % detection at Dp50 = 0.8 µm (Gabey et al., 2011). The WIBS size range is
optimised to sample most airborne bacteria and fungal spores, but only very small
pollen. Following initial particle detection and sizing, two optically filtered Xenon flash-
lamps are sequentially triggered providing excitation wavelengths centered at 280±1025

and 370±20 nm. The fluorescence emission is collected by two spherical mirrors and
split into two channels using a dichroic filter at 410 nm before being measured by two
photomultiplier tubes (PMT).
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Both PMTs record fluorescence during the 280 nm excitation phase because no de-
tection bands overlap the excitation band, however only the 410–650 nm PMT detector
is active during the 350 nm excitation. In subsequent discussions herein the three flu-
orescent channels will be referred to as FL1 (fluorescence between 300 and 400 nm,
following excitation at 280 nm), FL2 (fluorescence between 410 and 650 nm, following5

280 nm excitation) and FL3 (fluorescence between 410 and 650 nm, following excita-
tion at 370 nm). The autofluorescence arising from the 280 nm excitation in biological
material is influenced heavily by proteins and the bio-molecule tryptophan, whereas flu-
orescence from 370 nm excitation is influenced by riboflavin and co-enzyme NAD(P)H,
(Stanley et al., 2011; Benson et al., 1979; Billinton and Knight, 2001; Foot et al., 2008;10

Kaye et al., 2005; Li and Humphrey, 1991). However, fluorescence emission spec-
tra are inherently broad, and interrogating complex microorganisms and micron-sized
particles results in a complex mixture of fluorescence emission peaks from many fluo-
rophores that can be difficult to interpret unambiguously (Crawford et al., 2014; Pöhlker
et al., 2012).15

3 Hierarchical cluster methods

3.1 WASP

Hierarchical Agglomerative Cluster Analysis (HCA) has been demonstrated to be
a powerful tool to classify particles (Robinson et al., 2013; Crawford et al., 2014; Gabey
et al., 2013), however, the available analysis toolkits are limited by heavy computational20

burdens making the analysis of large datasets problematic. The WIBS AnalysiS Pro-
gram (WASP, Robinson et al., 2013) uses the average linkage clustering algorithm and
is written in Igor Pro1. WASP performs HCA on a random subset of the data limited to
a maximum of ≈ 1×104 data points with analysis taking around 4 h on a high powered

1WaveMetrics Inc., OR, USA
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desktop computer2. The choice of the number of clusters to retain is manually selected
by the inspection of several metrics and the remaining data is attributed to the cho-
sen clusters by comparison to the cluster centroids using a distance based similarlity
method as described in Robinson et al. (2013). The authors noted that this compar-
ative method can lead to systematic misattribution when less populous clusters form5

poorly defined centroids which do not reflect the true spread of the variables. They
also noted that particles outside of a specified distance from a cluster centroid are left
unclassified, potentially leading to an underpretdiction of cluster concentrations.

3.2 Fastcluster

In this manuscript we use open source HCA methods which can analyse datasets in ex-10

cess of 1×106 points on a desktop computer. Subsampling and comparative attribution
is not required as each data point is explicitly clustered. We also test the feasibility of
using an automated method for determining the optimum number of clusters to retain.

In this study we have used the open source Python package fastcluster (Müllner,
2013) which features several common linkages. Of the included linkages the Ward,15

centroid and median linkages do not require the distances between data points to be
stored in memory allowing for memory-saving modes to be used, greatly increasing the
maximum number of data points that can be analysed from approximately 7×104 to in
excess of 1×106 points using the test computer described earlier. In order to take ad-
vantage of the memory-saving algorithms the Euclidean distance metric must be used.20

The performance of the memory-saving linkages are assessed using laboratory sam-
pled particles of known type and an ambient data previously analysed with WASP. In
a future publication we will assess computational requirements in more detail, present-
ing results pertinent to “big data” analysis depending on the amount of data retrieved
during any given campaign.25

23.4 GHz quad core, 8 thread processor, 16 GB RAM, 64 bit OS.
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3.3 Overview of analysis procedure

In this section we provide an overview of the procedure followed when applying hierar-
chical agglomerative cluster analysis to WIBS data (summarised in Fig. 1):

1. Load and quality assure data.

2. Filter data.5

a. Remove particles Dp < 0.8 µm.

b. Remove non-fluorescent particles.

c. Remove saturating particles.

3. Normalise data.

4. Cluster data.10

5. Validate cluster solutions.

6. Generate cluster products.

These procedures are now discussed.

3.4 Data preparation

Prior to analysis it is necessary to prepare the single particle data to ensure that it is15

physically meaningful to prevent artefacts biasing the cluster solutions such that any
potential to effect the performance of any cluster analysis is minimised.

The particle collection efficiency of the WIBS drops below 50 % at ∼ 0.8 µm. We
have chosen to integrate number concentrations of particles> 0.8 µm rather than apply
a correction factor to the concentrations below this size.20

The baseline fluorescence of the instrument is measured during so-called forced trig-
ger (FT) sampling periods where the instrument triggers the flash lamps and records
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the resulant fluorescence in the abscence of aerosol in the sample volume. The WIBS-
4 instrument automatically makes such measurements if measured concentrations are
lower than 2 counts s−1 for a sustained period of time, on the basis that the coincidence
of a forced trigger measurement with a particle in the measurement region is small. The
mean fluorescence in a FT period is treated as the baseline fluorescence of the optical5

chamber during the sample period. For a particle to be considered fluorescent it must
exhibit a fluorescence greater than a threshold value, defined as the baseline fluores-
cence plus 3 standard deviations. The analysis software subtracts this threshold value
from measured fluorescence of each sample with all values greater than 0 being con-
sidered significantly fluorescent compared to the instrument baseline. Fluorescence10

measurments below the threshold (i.e. less than 0 after threshold subtraction) are not
considered physically meaningful and are clipped at 0. This simpifies the segregation
between fluorescent (FL) and non-fluorescent (non-FL) particles.

Sufficiently fluorescent particles (such as pollens) will saturate the PMT and as such
it is not possible to accuratly measure their true fluorescence. Data from saturating15

particles is not physically meaningful and are excluded from analysis.

3.4.1 Cluster validation indices

In order to remove the subjective nature of the method employed by Robinson et al.
(2013) to determine the optimum number of clusters to retain we have chosen to use
the Calinski–Harabasz criterion (CH) which is defined as being the ratio of the overall20

between cluster variance to the overall within cluster variance (Calinski and Harabasz,
1974). We calculte the CH index for the first 20 cluster solutions and select the solution
with the highest CH value as being the optimal solution.

3.4.2 Data normalisation

In the Robinson et al. (2013) study the prepared data was z-score normalised prior to25

analysis.
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We investigate the effect of normalisation on clustering performance using the fol-
lowing procedures:

1. No normalisation

2. Subtract mean, divide by standard deviation (z-score)

3. Standardise by range5

4. Divide by sum

5. Rank

These are the procedures considered in Milligan and Cooper (1988) excluding proce-
dures which produce identical results for the Euclidean metric. They concluded that the
range normalisation to be the best performing. We considered procedures proposed10

by Gnanadesikan et al. (2007) which considered better performing alternatives to the
above procedures. However it seems unlikely that the procedures will scale in terms of
performance for large data.

4 Datasets and data preparation

To assess the performance and suitability of the available clustering linkages we first15

look at a laboratory dataset of known particle types so that the cluster solutions can be
compared to the known result. We then trial the best performing methods on ambient
data from the BEACHON-RoMBAS experiment experiment which has been studied
previously using similar methods (Robinson et al., 2013; Crawford et al., 2014). These
datasets are now described in detail.20

4.1 Fluorescent polystyrene latex spheres

To test the applicability and performance of the memory efficient hierarchical ag-
glomerative clustering linkages available in the Python package fastcluster, 5 different
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polystyrene latex spheres3 (PSL) were sampled using the WIBS-4. They were of differ-
ent sizes and 4 of which had been doped with a fluorescent coating. The properties of
the tested PSLs are summarised Table 1.

The three fluorescence measurements (FL1-3), size and asymmetry factor were cho-
sen as inputs. The PSLs exhibit strong fluorescence, with some saturating the PMTs in5

multiple channels, as such we have chosen to keep saturating particles in the analysis
to maximise sample size. Non-Fluorescent particles and particles smaller then 0.8 µm
have been excluded from the analysis due to low collection efficiency. AF and size are
typically log-normally distributed. In keeping with the analysis peformed in Crawford
et al. (2014) and Robinson et al. (2013) we convert these variables to log space prior10

to analysis. As memory saving is used this limits analysis to using only the Euclidean
distance metric.

4.2 The regional BEACHON-RoMBAS experiment

The WIBS was deployed at the the Manitou Experimental Forest Observatory (MEFO),
located 35 km northwest of Colorado Springs, Colorado, USA (Ortega et al., 2014; Kim15

et al., 2010) as part of the Rocky Mountain Biogenic Aerosol Study project (BEACHON-
RoMBAS) during summer 2011. Details of the experiment and sampling arrangement
are given in Crawford et al. (2014). In the Crawford et al. (2014) study HCA was per-
formed on a subset of the WIBS data (≈ 1×104 particles) using the average linkage
with the remaining particles attributed to a cluster by comparison to the cluster centroid.20

Details of the attribution method and the process of selecting the number of clusters
to retain are provided in Robinson et al. (2013). This analysis yielded clusters which
were behaviorally consistent with fungal spores and bacteria. We perform analysis of
this data set using the methods described in this manuscript which we compare to the
Crawford et al. (2014) results.25

3Manufactured by Polysciences Inc., PA, USA and Duke Scientific Corp., CA, USA.
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5 Results

5.1 Fluorescent polystyrene latex spheres

The Fastcluster package was run with the seven available linkages each with the dif-
ferent normalisation procedures. Note that only the single, ward, centroid and median
linkage are available when the memory efficient version of the Fastcluster package is5

used.
We use the CH index to identify the “optimal” number of clusters and attempt to

construct a best match between the desired clusters and proposed clusters. Then to
evaluate the performance of the algorithm we calculate the proportion of the data points
placed into the same cluster for both the desired and proposed clustering. The results10

are given in Table 2.
For the full data set we can see that the z-score is the best performing normalisation

for all but the single and median linkages where the performance is poorer across all
normalisations.

However in Table 3 we repeat the tests for varying sample size where we see that as15

sample size decreases the range normalisation starts to outperform the z-score.
It appears that when using the full data set that the z-score normalisation with either

the ward linkage or average linkage is the preferred option. When sampling however
we see that range normalisation may be better.

An explanation for this behavior could be that the range normalisation suffers with20

outliers which we are much more likely to encounter for large samples so we would
expect better performance for the smaller samples. Contrast this with the z-score where
our measurement of the mean and the standard deviation is more accurate with large
samples.

Figure 2 shows the cluster centroids for the Ward linkage with range and z-score25

normalisation. It can be seen that both methods yield similar clusters to the known so-
lution, e.g. the average values of the 4.17 µm sample are accurately captured by the
5th cluster using range normalisation and the 3rd cluster using z-score normalisation.
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Similarly the 3.1 µm green PSL sample is captured by the 4th range normalised and
1st z-score normalised clusters. Figures 3 and 4 show a time series of the FL1-3 and
size input parameters (AF ommited from figure) which are colour coded by the clus-
ter assignments in Fig. 2. The bottom panel of each figure shows the fraction of each
cluster assigned to each sample where it can be seen that both normalisation methods5

achieve a high level of attribution accuracy with a minimum of 96 % of data points being
correcly attributed with no significant misattribution. The results of this experiment sug-
gest that both range and z-score normalisation are appropriate when clustering WIBS
data using the Ward linkage with each yielding an optimal 5 cluster solution correctly
attributing 98 and 98.1 % of the data points respectively. The centroid linkage with z-10

score normalisation also performed well, correctly attributing 97.3 % of the particles
into 5 significant clusters.

5.2 BEACHON-RoMBAS

Data from the BEACHON-RoMBAS experiment (≈ 8.2×105 fluorescent data points)
was analysed using the Ward linkage with both range and z-score normalisations and15

also the centroid linkage with z-score normalisation. The centroid linkage yielded a so-
lution with only one significantly populated cluster suggesting that it is inappropriate for
analysing ambient data. Figure 5 shows the cluster centroids of each Ward normali-
sation where the range yields a 5 cluster solution and z-score a 5 cluster solution. It
can be seen that the solutions of each are broadly similar; Range cluster 4 (hereby20

notated as R4) is similar to z-score cluster 1 (hereby notated as Z1); R2 is similar to
Z4. Additionally R1, R3 and R5 are similar to R2, suggesting that they are of similar
origin with the difference in fluorescence being due to size, morphology or particle age.
This is also observed in the z-score result in clusters Z2, Z3 and Z4. A time series (not
shown) of cluster concentrations shows these internally similar clusters to respond in25

a similar fashion to meteorological events such as rainfall. For ease of interpretation
the concentrations of similar clusters have been combined. Figure 6 shows a time
series of the combined cluster concentrations for each method and also the cluster
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concentrations obtained using WASP. It can be seen that the concentrations of clusters
R1 +R3 +R5, R2, Z2 +Z3 and Z4 all behave in a similar fashion to the WASP cluster
C3 which was determined to be be representative of bacteria owing to its strong pos-
itive response to rainfall (Crawford et al., 2014). The response of clusters R4 and Z1
are similar to the WASP cluster B3 which was determined to be reprentative of fungal5

spores owing to its diurnal response to relative humidity. Figure 7 compares the con-
centrations of the similar clusters for each normalisation method. Comparison of R5 to
Z4 (left panel, blue circles, representative of fungal spores) shows each method to yield
similar concentrations. Comparison of the bacterial cluster concentrations yields poor
correlation between methods when comparing the traces in Fig. 6 (left panel, black10

diamonds and red squares), however when the concentration of all clusters represen-
tative of bacteria are combined (left panel, majenta crosses) the correlation is excellent
(Nz score = 1.00×Nrange−1.42, R2 = 1). This suggests that the major difference between
the two different normalisation methods is how particles of similar types are partitioned
between the clusters.15

The right panel of Fig. 7 compares the z-score concentrations to those obtained
using WASP. It can be seen that the WASP fungal concentration is overestimated by
a factor of approximately 1.5 compared to the z-score result (Z4 and B3, blue circles).
The WASP bacterial concentration is underestimated by approximately a factor of 5
compared to the z-score result. Figure 8 shows the hourly average diurnal cycles of the20

fungal (top panels) and bacterial (bottom panels) cluster concentrations for the z-score
result (left panels) and WASP (right panels) over the period 27 July 2011–07 August
2011. Each method displays a similar trend with the fungal clusters exhibiting a mini-
mum during the day owing to the diurnal response of fungal spores to relative humidity
and the bacterial clusters responding to the frequent afternoon rain storms (Crawford25

et al., 2014). Again it can be seen that WASP overestimates the fungal concentration
by approximately a factor of 1.5–2 and underestimates the bacterial concentration by
a factor of 5–6. The most likely explanation for the observed discrepancies between
the WASP and z-score concentrations is due to the introduction of artefacts caused
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by the subsampling and comparative attribution methods used in WASP. In the fungal
spore case misattribution due to a poorly defined centroid can lead to an over estima-
tion as observed here. WASP yields only one cluster representative of bacteria while
the z-score method yields 3 and the range method 4. This results in WASP failing to
attribute data points potentially representative of bacteria to its single bacterial cluster5

leading to the observed underestimation.

6 Conclusions

Several hierarchical agglomerative cluster analysis linkages and normalisation meth-
ods were trialled using several laboratory samples of known particle type and a previ-
ously published ambient data set which was analysed using similar methods. The Ward10

linkage with range and z-score normalisation was found to successfully resolve the 5
test PSL samples with a high level of accuracy, correctly attributing 98 and 98.1 % of
the data points respectively. Analysis of the BEACHON-RoMBAS WIBS-3 data yielded
similar results using the Ward linkage with the range and z-score normalisation meth-
ods. Each method produced 1 cluster representative of fungal spores and several clus-15

ters representative of bacterial aerosol where the fungal concenctrations and the sum
of the bacterial aerosol concentrations agreed well. The BEACHON-RoMBAS results
were compared to the WASP results for the same data set Robinson et al. (2013);
Crawford et al. (2014) where it was found that WASP overestimated the fungal spore
concentration by a factor of 1.5 and underestimated the bacterial aerosol concentra-20

tion by a factor of 5 compared to the methods trialled here. This is likely due to errors
arising from misatrribution due to poor centroid definition and failure to assign particles
to a cluster as a result of the subsampling and comparative attribution method em-
ployed by WASP. The methods used here allow for the entire fluorescent population of
particles to be analysed yielding an explict cluster attribution for each particle. This im-25

proves cluster centroid definition (e.g. allowing for several bacterial clusters compared
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to just 1 in WASP) and removes the potential for underestimation by failing to attribute
a particle to a cluster.

In this paper we have demonstrated that WIBS single particle UV-LIF spectrometer
data can be successfully segregated using the Ward hierarchical agglomerative clus-
ter analysis linkage with z-score and range data normalisation. The explicit clustering5

method employed in this study can be applied to large datasets, removing potential
clustering aretfacts associated with the subsampling and attribution method used in
previous approaches, improving our capacity to discriminate and quantify PBAP meta-
classes. These improved techniques will be of importance for interpreting data from
future multi-parameter UV-LIF instruments with improved fluorescence resolution and10

for extending the measurement technique to real-time quantification for ambient moni-
toring networks.
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Table 1. Properties of the polystyrene latex spheres sampled.

PSL sample Size [µm] Doping Sample size

1 4.17 None 8927
2 3.1 Green 7976
3 2.2 Red 8942
4 2.1 Blue 8796
5 1 Green 5055
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Table 2. Performance of the different linkages and normalisation procedures for the full data set
in terms of the percentage of data points placed into the same cluster as the known clustering.
In bold are the best performing normalisations for each linkage.

None z-score range sum rank

Single 48.065 24.384 48.065 47.996 42.160
Complete 87.996 96.039 87.531 85.126 82.390
Average 87.432 97.791 87.406 65.772 96.990
Weighted 85.439 89.675 64.843 82.798 65.056
Ward 72.606 98.136 98.036 97.726 98.011
Centroid 87.423 97.264 87.446 65.772 96.805
Median 82.361 80.575 82.974 84.912 65.501
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Table 3. Performance of the ward for varying sample size.

Sample size 500 1000 5000 10 000 20 000

z-score 79.330 85.696 94.746 97.543 97.132
range 95.664 97.671 98.041 98.065 98.074
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Figure 1. Schematic of procedure followed to generate cluster products from raw data. Relevant
sections for each sub-procedure are labelled where appropriate.
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Figure 2. Top panel: average FL1-3 detector intensites (blue, green and brown bars, left axis),
size (diamond, right axis) and asymmetry factor (cross, right axis) for the 5 PSL samples. Middle
and bottom panels: the same as for the top panel but for the Ward linkage solution centroids
using range (middle) and z-score (bottom) normalisation.
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Figure 3. Time series of PSL samples with data points coloured by cluster assignment for ward
linkage and range normalisation. Bottom panel shows the fraction of each cluster assigned to
each sample with the most populated cluster annotated above.
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Figure 4. Same as Fig. 3 but for ward linkage and z-score normalisation.
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Figure 5. Same as Fig. 2 but for BEACHON-RoMBAS ambient data.
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Figure 6. Time series of BEACHON-RoMBAS cluster concentrations using ward linkage with
range (top) and z-score (middle) normalisation as compared to the solutions obtained using
WASP (bottom) for the period 12:00 p.m. 26 July 2011 to 12:00 28 July 2011. Clusters with
similar centroids have been combined. See text for details.
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Figure 7. Left: comparison of Ward linkage cluster concentrations using range and z-score nor-
malisation for BEACHON-RoMBAS. Right: comparison of Ward linkage cluster concentrations
(z-score normalisation) to WASP cluster concentrations.
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Figure 8. Top panels: hourly average diurnal cycle of fungal cluster concentration for z-score
normailisation (left) and WASP (right) over the period 27 July 2011–07 August 2011. Bottom
panels: same as for top panels but for the bacterial clusters. Whiskers denote 5th and 95th
percentiles. Mean value indicated by x marker. Note change in scale for bacterial panels.
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